

PROGRAN

Hematology

President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024 Penn Medicine Center for Cellular Immunotherapies

CAR-T cells for adult ALL and AML

Marco Ruella, MD Assistant Professor of Medicine

BOLOGNA, ROYAL HOTEL CARLTON

- *Inventor:* CART technologies, Univ. of Pennsylvania, partly licensed to Novartis, Tmunity, and viTToria biotherapeutics
- **Research Funding:** AbClon, Beckman-Coulter, ONI, Lumicks, viTToria bio
- **DSMB**: PeproMene
- Consultancy/Honoraria: GLG, Guidepoint
- Advisory Board: viTToria bio, AbClon, BMS, Sana, GSK, Bayer
- Scientific Founder: viTToria biotherapeutics

FDA-approved CART in the US

tisagenlecleuce ℃ KYMRIAH [™]	NDC 0078-0846-19 Human T-Cells Rx only Suspension for IV infusion Cultured, genetically modifies For autologous use only
Target Total Volume 10mL-50mL per bag	Dispense with Medication Guide
sodium chloride, 20% (wv) of 25% HSA, 10% (wv	of 10% Dextran 40 (LMD)/5% Dextrose

August 2017: Ped./AYA B-ALL 3rd line > May 2018: LBCL 3rd line > May 2022: FL 3rd line >

March 2021: MM 5th line >

October 2017: LBCL 2nd line > March 2021: FL 3rd line >

July 2020: r/r MCL 3rd line > Oct 2021: r/r adult B-ALL 3rd line >

February 2021: LBCL 2nd line >

<section-header>

March 2022: MM 5th line >

Selected autologous CART19 trials in adult and pediatric ALL

Reference	Co-stim Domain	Ν	Age	Prior Blina	Prior SCT	CR
ADULT PATIENTS						
Reuben B, Lancet Hae matol, 2022	Allo 4-1BB UCART19	25	37 (16-70)	48%	72%	48%
Shah, J Hemat Oncol, 2022	CD28	55	40 (28-52)	45%	42%	<mark>71%</mark>
Roddie, JCO, 2021	4-1BB fast off rate	20	41.5 (18-62)	25%	65%	85%
Frey, JCO, 2020	41BB	35	34 (21-70)	31%	37%	69%
Hay, Blood, 2019	41BB	53	39 (20-76)	20%	43%	85%
Park, NEJM, 2018	CD28	53	44 (23-64)	25%	36%	83%
COMBINED PEDIATRIC	AND ADULT	PATIE	NTS			
Ortiz-, MolTher 2020	41BB	38	24 (3-67)	26%	87%	85%
Wang, BrJHem, 2020	41BB	23	42 (10-67)	NA	0%	83%
Jiang, AJH, 2019	41BB	58	28 (10-65)	NA	5%	88%
Maude, NEJM, 2014	41BB	30	14 (5-60)	10%	60%	90%
PEDIATRIC AND ADOLE	SCENT YOU	NG AD	ULT PATIENTS			
Shah, JCO, 2021	CD28	50	13.5 (4.3-30.4)	10%	40%	62%
Maude, NEJM, 2018	41BB	75	11(3-23)	0	61%	<mark>81%</mark>
Gardner, Blood, 2017	41BB	45	12.2(1.3-25.3)	14%	62%	93%

- High CR rates (62-93%)
 - Remissions:

٠

٠

- Occur quickly (by 1 month)
- Often MRD negative
- CARTs traffic into CNS & other extra- medu llary sites
- Heavily pretreated pts
- Impact of prior CD19-specific immuno-thera py
 - Impact of disease-assoc. mutations

4-1BB costimulated CART19 for B-ALL (CTL019, tisa-cel)

Laetsch TW, JCO, 2022

Shah B, Lancet, 2021 Shah B, J Hemat Onc, 2022

Shah N, JCO, 2021

CD19+ relapses: primary resistance

Singh et al, Cancer Discovery 2020;10:55

CD19-neg relapses

Convergence of acquired mutations and alternative splicing of CD19

(Sotillo, 2015; Orlando EJ, Nat Med, 2018)

Transdifferentiation

(Gardner, 2016, Oberley Mj, 2018)

CAR19+ B-ALL: relapse by epitope-masking

Strategies to overcome CD19-neg antigen-escape

Adapted from Ruella M. Comput Struct Biotechnol J 2016

CART-22 (Penn & CHOP)

ARTICLES

Check for updates

Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells

medicine

Nathan Singh [©] ^{1,215,16} [⊠], Noelle V. Frey^{1,16}, Boris Engels^{3,16}, David M. Barrett^{4,5}, Olga Shestova², Pranali Ravikumar², Katherine D. Cummins [©]², Yong Gu Lee², Raymone Pajarillo², Inkook Chun², Amy Shyu [®]³, Steven L. Highfill³, Andrew Price³, Linlin Zhao³, Liaomin Peng³, Brian Granda³, Melissa Ramones³, Xueqing Maggie Lu⁶, David A. Christian⁷, Jessica Perazzelli⁴, Simon F. Lacey^{2,8,9}, Nathan H. Roy^{9,10}, Janis K. Burkhardt [©] ^{9,10}, Florent Colomb¹¹, Mohammad Damra¹¹, Mohamed Abdel-Mohsen¹¹, Ting Liu¹², Dongfang Liu[®] ^{12,13}, Daron M. Standley¹⁴, Regina M. Young², Jennifer L. Brogdon³, Stephan A. Grupp [®]⁴, Carl H. June [®] ^{12,9}, Shannon L. Maude^{4,16}, Saar Gill^{1,2,16} and Marco Ruella [©] ^{12,16} [⊠]

- Response rates and persistence with PENN product lower than anticipated
- The NCI product appeared more promising in the clinic; PENNs construct very similar except for a longer linker length
- Preclinical studies showed linker length impacted CAR structure which impacted effector function: shorter linker better
- PENN developed CART22 with shorter linker for further clinical testing- now enrolling at CHOP: Steve Grupp PI

Singh et al, Nature Medicine 2021

Pooled huCART19 + CART22-65s for Adults with r/r BALL

Fractionated Dosing: Doses held for Early CRS

CART19 and CART22: (N=13)

- 13 pts infused
- 11 pts evaluable D28
- 11 CR/CRi (MRD) 85%

Med follow up 11.8 mo:

- One pt with molecular recurrence
- 10 with ongoing CR/CRi

Frey N. Volume 138, Supplement 1, 23 November 2021, Page 469

Different peak expansions correlate with distinct CRS events

AML clinical results – published & abstracts

Agent	Patients treated	Responses Toxicity		Comm	ients	Reference						
CD123												
Donor CART-123	1	PR (?)	Yao 2019									
UniCART-123	3	1 PR, 2 CRi	CRS gr. 1 (n=2) Myelosuppression	n=2) Expansion, persistence seen. IL-6, TNF, pression IFNy detected.								
CART-123	7 (18 enrolled)	2 MLFS, 1 CRi	CRS gr. 1-2	Peak expansion at day 14. No CD123 loss.		Peak expansion at day 14. No CD123 loss.		Budde 2019				
UCART-123	16	1 MLFS, 1 CR (UMRD)	CRS in 15/16 including 2 gr.4 and 1 gr.5 CRS.			Sallman 2022						
CD33												
UltraCART-33	24 (10 without and 14 with lymphodepletion)	Objective responses in 30%	Gr. 1 CRS (n=10), gr. 2 CRS (n=6), gr. 3 CRS (n=1). No bone marrow aplasia	Dose-de marrow	ependent expansion in blood v. Persistence up to 7 months	l and Sallman 2022 s.						
CART-33	1	PR	CRS, pancytopenia	IL-6, IL-	<u>8,TNF</u> , IFNγ detected.	Wang 2015						
CART-33	3	None	CRS (n=2). ICANS (n=1)	Tambaro 2021								
CART-CLL1	7 (pediatric)	CR in 5 / 7	Gr. 1-2 CRS (n=7)			Pei 2023						
CART-CLL1	10 (adult)	CR or CRi in 7/10	Low grade CRS (n=4). High grade CRS (n=6). Severe pancytopenia (n=10)	response rate		Jin 2022						
CART-CLL1	8 (pediatric)	MLFS in 5/8, CRi in 1/8, 1 PR	CRS (n=8) Loss of CLL1+ subset in 1 patient			Zhang 2022						
Other												
CART-Lewis Y	4	Cytogenetic response 1/4	None	Trafficking to marrow demonstrated using radiolabeling		Ritchie 2013						
NKG2D ligands	12	Objective response in 3 / 12	Gr. 3-4 CRS (n=5)			Sallman 2023						

CART-123 in AML: clinical trial at UPenn

1	Sex		Age		Race		Prior lines of	therapy	Prior alloHCT		Cytogenetics *		Molecular ^		Marrow bla	sts	Infused	
	Male	9	Median	59.5	Caucasian	17	Median	5	Yes	11	Favorable	0	Favorable	0	Median	40%	Yes	12
	Female	11	Range	22 - 69	Black	2	Range	1 -9	No	9	Intermediate	5	Intermediate	13	Range	4 - 85%	No	8
					Asian	1					Adverse **	15	Adverse ^^	7				

* by 2017 ELN risk classification

** complex, inversion 3, del(5q), -7, KMT2A rearrangements,

^ by 2017 ELN risk classification and Papaemmanuil NEJM 2016

^^ TP53, RUNX1, GATA2, ASXL1

Days

CART-123 in AML: Efficacy

Unpublished , please do not post!

Overall Survival

Saar Gill, MD, PhD

CART123: Cytokine release syndrome and CART expansion

CART19 = adults with B-ALL, Frey et al, JCO 2020;38(5):415-422

1. TCR-based therapies ¹⁻⁴ (including TCR-like CARs ⁵) that target *intracellular* neoantigens or cancer-testis antigens

2. Discover a cell surface marker that is specific to neoplastic myeloid cells ^{6,7}

- 3. Logic-gated CARs ⁸
- 4. Create a cancer-specific antigen 9-11

¹ Chapuis Nat Med 2019 ² Biernacki J Clin Invest 2020 ³ Raskin Mol Ther 2021 ⁴ Lulla Blood 2021 ⁵ Xie Nat Biomed Eng 2021 ⁶ Reis ASH 2022 #6. ⁷ Mandal ASH 2022 #357 ⁸ Haubner Cancer Cell 2023 ⁹ Kim Cell 2018 ¹⁰

Courtesy of Saar Gill, MD, PhD

4. Create a cancer-specific antigen

Epitope editing enables targeted immunotherapy of acute myeloid leukaemia

Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy

Wellhausen... Gill, Sci Transl Med, 2023

Conclusions and perspectives

CART for B-ALL:

- different effect in pediatric vs. adult patients
- CD19-neg escape an issues → *DUAL TARGETING APPROACHES*
- CD19+ relapses → <u>ENHANCE CART FUNCTION, ENHANCE TUMOR APOPTOSIS</u>
- Role of post-CART transplant TBD (adult, CD28, B-cell aplasia, MRD+, previous SCT)
- Effect post-blinatumomab
- Role of allogeneic CART and immunogenicity

CART for AML:

- limited responses and short lasting
- no pronounced myelosuppression
- absence of ideal targets → gated strategies, gene-editing of HSC
- major toxicity: CRS

CART for T-ALL:

- initial results promising with CART7
- use as bridging therapy
- allogeneic
- CD7-neg escapes
- infections

Acknowledgments

Ruella Lab Patrizia Porazzi **Ray Pajarillo** Guido Ghilardi Ivan Cohen Alberto Carturan Luca Paruzzo **Mathew Angelos** C. Tor Sauter **Jaryse Harris** Puneeth Guruprasad Ruchi Patel Yunlin Zhang Siena Nason Ositadimma Ugwuany **Ekta Singh** Ziqi Yang Rebecca Yelton Linhui Chen Audrey Bochi-Layec Melody Tan

<u>Saar Gill Lab</u> Miriam Kim Olga Shestova Sherly Mardiana

Carl June Lab Carl H June John Scholler and all lab members

<u>Correlatives and</u> <u>manufacturing</u> Joe Fraietta Bruce Levine

Hairy Cell Leukemia

GABRIELLE'S ANGEL FOUNDATION FOR CANCER RESEARCH Lymphoma Program Stephen Schuster Jakub Svoboda Stefan Barta Sid Bhattacharya and all clinical staff

<u>CTT</u> David Porter Noelle Frey <u>CHOP</u> Stephan Grupp Shannon Maude David Barrett David Teachey

Patients and their families

All collaborators!!!

AbClon

PARKER INSTITUTE FOR CANCER IMMUNOTHERAP

Emerson Collective

CILEAD SCIENCES INTERNATIONAL RESEARCH SCHOLARS PROGRAM N HEMATOLOGY/ONCOLOGY

mruella@upenn.edu

https://www.med.upenn.edu/ruella-lab/

Selected Bispecific Approaches with CARTs

Antigen target	CAR design		Disease	CR (n = treated patients)	References
CD19+CD22	Tandem	19.22.4-1BΒζ	B-ALL	87% (n = 15)	Wang Y et al., 2020
			B-ALL	100% (n = 6)	Dai H et al., 2020
			B-ALL	88% (n = 17)	Spiegel J et al., 2021
			DLBCL	29% (n = 21)	Spiegel J et al., 2021
			DLBCL	63% (n = 16)	Wei G et al., 2021
			B-ALL	83% (n = 7)	Hu Y et al., 2021
			DLBCL	64% (n = 33)	Qu C et al., 2022
			B-ALL	60% (n = 20)	Shalabi H et al., 2022
	Dual	19.0X40ζ and 22.4-1BBζ	B-ALL	86% (n = 15)	Cordoba S et al., 2021
	Sequential	CD19 CD22	B-ALL	98% (n=79)	Pan, Lancet Oncol. 2023
	Pooled	CD19 CD22	B-ALL	99% (n=192)	Wang, JCO 2023

The role allogeneic transplant after CART19 in B-ALL

No randomized data to make a strong statement on the role of SCT after CART19. However:

- CART19 lead to long-term remissions in a subset of B-ALL patients, however relapse (CD19-/+) common
- Toxicity for CART less impactful than SCT
- In retrospective, non-randomized comparisons SCT seems to be beneficial for: patients with short B-cell aplasia, adult B-ALL, ped B-ALL with CD28 CARTs, no prior SCT

Randomized trials needed

Until then, selection of patients that would benefit from SCT:

4-1BB vs CD28 and duration of B cell aplasia Peds vs. adults Prior SCT Likelihood of antigen-escape (prior blinatumomab or inotuzumab; MLL-1, BCR-ABL) Poor prognostic factors for CART (LDH, plts...) Donor availability and donor type Clinical fitness (PS and comorbidities) Minimal residual disease after CART19

Early use of CART19, Dual CART19/22 will soon change the treatment paradigm for B-ALL and the use of SCT